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The magnetically confined radiation zones surrounding the Earth were 
the first major discovery of the Space Age in 1958 (1–4). Long-term 
observations of these energetic particle populations subsequently have 
shown dramatic, highly dynamic changes of the outer Van Allen belt. 
Previous, rather sparse measurements of the radiation environment sug-
gested that powerful acceleration events for relativistic electrons occur 
on time scales ranging from minutes (5, 6) to many hours (7, 8). Thus, 
there has been direct as well as circumstantial evidence that an immense-
ly powerful and efficient accelerator operates within the terrestrial mag-
netosphere just a few thousand kilometers above the Earth’s surface. 

On 30 August 2012, twin NASA spacecraft, the Radiation Belt 
Storm Probes (RBSP), were launched into highly elliptical, low-
inclination orbits around the Earth. The RBSP satellites are fully instru-
mented with identical energetic particle, plasma, magnetic field, and 
plasma wave sensors to measure and thoroughly characterize the radia-
tion belt regions (9). The scientific payloads on board the RBSP space-
craft (renamed the Van Allen Probes mission by NASA at a formal 
ceremony on 9 November 2012) have unprecedented detection sensitivi-
ty, energy resolution, and temporal sampling capability. In particular, the 
Relativistic Electron-Proton Telescope (REPT) experiment (10) 
measures the key ~1 MeV to ~20 MeV electron population throughout 
the RBSP orbit which extends from geocentric distances of r = 1.2 RE to 
r = 5.8 RE (1RE, Earth radius – 6372 km). The REPT sensors were 
among the first instruments turned on (1 September 2012) and have been 
returning nearly continuous data since that time from both Van Allen 
Probes spacecraft. 

Prior key measurements of Earth’s 
radiation environment have been made 
(11–13), but some of the longest and 
most comprehensive radiation belt ob-
servations previously have come from 
sensors on board the Solar, Anomalous, 
and Magnetospheric Particle Explorer 
(SAMPEX) mission (14). This space-
craft made low-Earth orbit (LEO) ob-
servations of inner and outer zone 
particles from its launch in July 1992 
until its recent atmospheric reentry and 
demise on 13 November 2012 (15, 16). 
SAMPEX measured E > 1 MeV elec-
trons at the near-Earth foot of magnetic 
field lines but never was able to look 
into the “throat” of the radiation belt 
accelerator in the magnetospheric equa-
torial plane. This contrasts dramatically 
with the REPT-A and REPT-B instru-
ment data collected by the Van Allen 
Probes from 1 September 2012 through 
early October 2012 (Fig. 1). These data 
show that a powerful electron accelera-
tion event was already in progress as 
the instruments were first turned on. 
The entire outer radiation belt was en-
hanced in electron flux from E ~2.0 
MeV (Fig. 1A) up to energies well 
above the 6.2 < E < 7.5 MeV channel 
(Fig. 1C). At this time, the radiation 
belt populations clearly had the ex-
pected double-belt structure with an 
inner zone, an outer zone, and a “slot” 
region of greatly diminished intensity 
separating the two. 

What is most striking (and unex-
pected) is the clear emergence of a separate, previously unseen belt, or 
“storage ring,” of high-energy electrons that stands out clearly after 2 
September. This belt is evident in the E = 4.0-5.0 MeV range (Fig. 1B) 
and is the dominant flux feature in the E = 5.0-6.2 MeV energy range 
(Fig. 1C). This distinctive ring of highly relativistic electrons persists, 
changing only gradually, until its abrupt and almost complete disappear-
ance late on 1 October. While the inner zone, the slot region, and the 
relativistic storage ring (3.0 < L* < ~3.5) change relatively little over 
this four-week period, the more distant part of the outer Van Allen belt 
shows huge dynamical changes with new electron populations appearing 
at L* > 4.0 beginning on about 7 September and intensifying greatly 
over a period of two weeks. Subsequently, the outermost parts of the 
outer Van Allen zone grew and diminished further with little effect on 
the storage ring feature until the abrupt demise of virtually the entire 
outer zone electron population at the end of 1 October. Other electron 
sensor systems on board the Van Allen Probes spacecraft, overlapping 
partially in energy coverage with the REPT sensors, also detected the 
storage ring feature (17). 

The distinct storage ring feature is more clearly evident in the merid-
ional plane projection of 4.0-5.0 MeV electrons from the combined 
REPT-A and REPT-B instrument records (Fig. 2). In the earliest obser-
vational phase (1-3 September) the expected two-belt structure of the 
Van Allen zones is clear (Fig. 2A). In the next phase from 3 to 6 Sep-
tember, the relativistic storage ring was formed (Fig. 2B) probably large-
ly by erosion and loss of the more distant parts of the outer zone. It then 
persisted in a remarkably stable fashion (Fig. 2, C and D) throughout the 
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Since their discovery over 50 years ago, the Earth’s Van Allen radiation belts have 
been considered to consist of two distinct zones of trapped, highly energetic 
charged particles. The outer zone is comprised predominantly of mega-electron volt 
(MeV) electrons that wax and wane in intensity on time scales ranging from hours to 
days depending primarily on external forcing by the solar wind. The spatially 
separated inner zone is comprised of commingled high-energy electrons and very 
energetic positive ions (mostly protons), the latter being stable in intensity levels 
over years to decades. In situ energy-specific and temporally resolved spacecraft 
observations reveal an isolated third ring, or torus, of high-energy (E > 2 MeV) 
electrons that formed on 2 September 2012 and persisted largely unchanged in the 
geocentric radial range of 3.0 to ~3.5 Earth radii for over four weeks before being 
disrupted (and virtually annihilated) by a powerful interplanetary shock wave 
passage. 
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remainder of September until its almost complete annihilation early in 
October 2012. 

We note that powerful “injection” of high-energy electrons and pro-
tons deep into the inner part of the Earth’s magnetosphere on 24 March 
1991 (5, 18, 19) was observed by instruments on board the CRRES 
spacecraft (13). It was a highly impulsive event caused by an exception-
ally strong interplanetary shock wave (5, 6). This March 1991 event was 
a stark example of the sudden appearance of a newly energized popula-
tion of both protons and electrons in a localized portion of the slot region 
of the radiation belts that normally is nearly devoid of very energetic 
particles (19, 20). This prior event contrasts with the storage ring feature 
observed by the Van Allen Probes sensors: The storage ring clearly re-
sulted largely from loss of the more distant portion of the outer zone 
electron population rather than fresh, localized injection of the March 
1991 type. The original acceleration of the electron population (prior to 
the turn-on of REPT on 1 September) that eventually formed the storage 
ring may have resulted either from local wave heating (21, 22) or from 
enhanced radial diffusion (23, 24) or both. 

Based on prior radiation belt research [e.g., (7, 15)], the outer Van 
Allen zone electron populations would be expected to respond rather 
directly to changes in the solar wind, interplanetary magnetic field 
(IMF), and geomagnetic activity. Indeed, the development of the storage 
ring feature itself (Fig. 3) was closely associated with loss of outer belt 
electrons following passage of an interplanetary shock wave on 3 Sep-
tember, seen as a sharp increase in solar wind speed (Fig. 3B) and abrupt 
change in the IMF (Fig. 3C). Subsequently, a new population of highly 
relativistic electrons emerged at a region around L* ~4.0 and grew in 
intensity and spatial extent (Fig. 3A) following a high-speed solar wind 
episode (Fig. 3B) on 5 September. Another such period of high-energy 
electron flux diminution, reappearance, and intensification was seen 
from ~21 September through to 1 October (Fig. 3A), again this sequence 
occurring in the wake of a powerful high-speed solar wind stream on 20-
21 September (Fig. 3B). As noted above, one of the most abrupt and 
striking features of the entire data set was the nearly complete disappear-
ance of the entire outer zone electron population late on 1 October asso-
ciated with another interplanetary shock wave (Fig. 3, B and C) and 
relatively strong geomagnetic storm (seen in Dst, which measures global 
magnetic field disturbance, Fig. 3D). 

Figure 3A shows that for the period of 1-4 September, the average 
plasmapause boundary was relatively close to the Earth (L* ~ 3) and a 
powerful outer zone electron acceleration event was occurring in the low 
plasma-density region outside the plasmasphere. However, from ~4 Sep-
tember until ~6 October, the plasmapause was much farther outward, 
ranging at L* > 4. Thus, the storage ring feature as well as most of the 
outer Van Allen zone E > 4.5 MeV electron population was inside the 
high-density plasmasphere. However, in the traditional picture the outer 
zone electron belt would largely be outside the plasmasphere and the slot 
region inside the plasmasphere outer boundary (21–23, 25). 

The radiation belt particle populations are determined by a complex 
superposition of acceleration, transport, and loss processes modulated by 
their interactions with plasma waves (24). We are now seeing unex-
pected radiation belt structures (Fig. 4), but have yet to fully understand 
them in the context of present radiation belt theory. 
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Fig. 1. Energetic electron data from the Radiation Belt Storm Probes (RBSP) satellites in 
eccentric orbits around the Earth showing several discrete energy channels of the 
Relativistic Electron-Proton Telescope (REPT) instruments on board the spatially 
separated RBSP-A and RBSP-B spacecraft. Each panel’s vertical axis is the L* parameter 
which is effectively the distance in Earth radii at which a magnetic field line crosses the 
magnetic equatorial plane. The horizontal axis is time from 1 September 2012 to 4 October 
2012. Electron differential flux values (in units of electrons/cm2-s-sr-MeV) are in a color-
coded logarithmic scale as shown to the right of the figure. (A) Electrons in the energy 
range 3.2 ≤ E ≤ 4.0 MeV. (B) Electrons with 4.0 ≤ E ≤ 5.0 MeV. (C) Electrons with 5.0 ≤ E ≤ 
6.2 MeV. 
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Fig. 2. Meridional plane projections of the REPT-A and 
REPT-B electron flux (4.0-5.0 MeV) values as shown 
according to the logarithmic color scale to the right of the 
figure. Each panel shows a limited interval of time in a 
magnetic latitude – L* coordinate system. (A) For 1-3 
September the expected two-belt Van Allen zone structure 
with an inner zone electron population (L* < ~2.5), a relatively 
empty “slot” region (2.5 < L* < 3.0), and an outer zone 
population (L* > 3.0). (B) From 3 September through 6 
September only an intense belt of electrons remains in the 
range 3.0 < L* < 3.5; the inner zone and traditional slot region 
have not changed. (C) The “storage ring” belt, or torus, 
feature persists at 3.0 < L* < 3.5 while a new slot region is 
seen at 3.5 < L* < 3.8 and a completely new outer zone 
population has formed at L* > 3.8. (D) The storage ring 
feature remains while the outer zone at L* > 3.8 decays 
away. (E) The entire outer zone (L* > ~3.0) has virtually 
disappeared at these energies. 
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Fig. 3. (A) Similar to panel (B) of Fig. 1 but including the plasmapause, the outer 
boundary of the plasmasphere (26) for the period 1 September to 7 October 2012. The 
white curve over-plotted upon the color-coded electron particle flux data in Fig. 3A 
shows the modeled, 3-day averaged plasmapause radial location that is in agreement 
with concurrent plasma wave data (17, 27, 28). (B) The concurrently measured solar 
wind speed upstream of the Earth’s magnetosphere. (C) The interplanetary magnetic 
field for the interval under study. (D) The geomagnetic activity index Dst for the period 
under study. 
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Fig. 4. Diagrams providing a cross-sectional view of the Earth’s radiation belt structure and relationship to the 
plasmasphere. (A) A schematic diagram showing the Earth, the outer and inner radiation belts and the normal 
plasmaspheric location. (B) Similar to (A) but showing a more highly distended plasmasphere and quite unexpected 
triple radiation belt properties during the September 2012 period. These diagrams show the highest electron fluxes 
as white and the lowest fluxes as blue. The radiation belts are really ‘doughnut’ or torus-shaped entities in three 
dimensions. The Earth is portrayed at the center. Also shown, as a translucent green overlay in each diagram, is the 
plasmasphere. 
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